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Abstract  

Management  of coastal and marine natural resources presents a  number  of challenges as a  growing  

global population and a  changing climate  require  us to find better strategies to conserve  the  

resources on which our health, economy, and overall  well-being depend. To evaluate  the status 

and trends  in changing coastal resources  over  larger areas, managers in  government agencies  and  

private stakeholders around the world have increasingly turned to remote sensing technologies. A 

surge  in collaborative  and innovative efforts between resource  managers,  academic  researchers, 

and industry partners is becoming  increasingly vital to keep pace  with evolving changes of our  

natural resources. Synoptic  capabilities of remote  sensing  techniques allow assessments that are  

impossible to do with traditional methods.  Sixty years of remote  sensing  research  have  paved the  

way for  resource  management applications, but uncertainties regarding the use  of this technology 

have  hampered its use  in management fields. Here  we  review  examples of remote  sensing  

applications in the  sectors of coral  reefs, wetlands, water quality, public  health, and fisheries  and  

aquaculture  that have successfully contributed to management and decision-making goals.  

Keywords:  coastal resources, coral reefs, wetlands, water quality, public health, fisheries  
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54 1.0 Introduction  

As of 2010, over 2.5 billion people (~40%  of the global population) live  in coastal 

ecosystems that are  increasingly vulnerable to natural and anthropogenic  influences (Sale et al.  

2014).  In  the next few decades, these  areas  will  be  affected by  changing atmospheric  and ocean  

temperatures, sea  levels,  ocean chemistry,  weather patterns, and the increased demands of a  

growing global population. Without proper strategies to manage  our use  of resources, these  

changes will  result  in increased risks to  human health, property,  economic  vitality, and further  

damage  to  services we  derive  from these  ecosystems (Dubey  2014; Pereira  et al.  2010; Pettorelli  

et al.  2014; Sale et al.  2014; Wigbels  2011).  To improve  coastal ecosystem management, decision-

makers should take  further advantage  of the  synoptic, frequently sampled, and often freely  

accessible satellite remote  sensing  technology that is available today (Kachelreiss  et al.  2015;  

Pettorelli et al.  2012).  

Remote  sensing  techniques have  substantially improved our ability to observe  the  

environment and its processes (De  La  Rocque  et al.  2004; Heumann  2011). Currently, however, 

remote  sensing  technologies are  underutilized in  environmental management (Heumann  2011; 

Pettorelli et al.  2014).  Based on an internal survey of Environmental Protection Agency personnel,  

who were  responsible for integrating scientific  research into decisions related to  policy and  

management, Schaeffer et al. (2013) identified  four  main themes  regarding why these  technologies  

may be  underutilized: costs  and accuracy of data  products, uncertainty about satellite mission  

continuity, and difficulty in  obtaining administrative  approval for  using remote  sensing  in 

decision-making.  Additionally, managers may  be  unfamiliar with the breadth of current  satellite 

data, and  therefore  under  the impression  that available imagery may  be  insufficient to meet their  

needs.  
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77 Our  goal with this review  is to illustrate applications of satellite remote  sensing techniques 

that have  successfully improved management capabilities in coastal sectors, and summarize  the 

data that is currently available for  management use. We  provide  examples in coral reefs and  

wetlands, assessments of water  quality and  public health, and  support to fisheries and aquaculture  

activities.  

Each satellite sensor is designed for  particular  sets of  applications. Tradeoffs exist  between 

spectral, spatial, and  temporal resolution for  different sensors.  Specifically, spatial resolution is 

the spatial “footprint”, or pixel (picture  element) size, which is the smallest  portion of the Earth’s 

surface  discretely sampled by a  device. Figure  1 compares the spatial resolution (C and D)  of the  

Landsat 8 sensor (30 meter)  to that of WorldView-2 (2 meter), as well  as the  additional tradeoff  of 

greater geographical coverage  per image  “tile”  with coarser resolution imagery (A  and B).  Spectral  

resolution is the smallest window in wavelength or frequency space  of the electromagnetic  

spectrum that  is discretely sampled by  a  sensor.  Sensors typically have  several spectral bands that   

sample  different parts of the electromagnetic  spectrum at different spectral resolutions. Temporal 

resolution is the frequency or revisit time at which  a  sensor collects subsequent measurements of 

the same location. In addition, sensors and the satellite platforms on which they fly need to be  

designed to satisfy a  number of minimum requirements in order to observe  particular  phenomena.  
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94 
95 Figure 1. Geographic coverage per image “tile”,  and spatial resolution of Landsat 8 and 

WorldView-2 are  compared.  

 

For example, many satellite sensors designed for viewing the ocean in the visible range of 

the electromagnetic  spectrum (reflected color) and in the infrared (emitted thermal radiation) have  

nominal spatial resolutions of about one  square  kilometer. This allows capturing mesoscale and  

larger spatial variability of the open ocean at near daily revisit time from orbits at altitudes of about  

600-800 km above  the Earth. Medium-resolution sensors such as those flown on the Landsat series  

have  a  spatial resolution  on the  order of  30 m, wide  spectral bands (~60 nm bandwidth), and a  

revisit time of 16  days.  The  European Sentinel-2 satellite has a  spatial  resolution from ~10 to  60 

m depending on the band, spectral bandwidths  from 10 to 60 nm, and a  revisit period of ~2-3 days. 

Geostationary sensors operate from an  orbit of about 36,000 km above  the  Earth and can collect  
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107 data several times per day from low- to mid-latitudes in a  single  hemisphere. Many weather  

satellites have  such hemispheric  coverage. The  Korean Geostationary Ocean Color Imager (GOCI) 

focuses on a  small geographic area  with a  spatial resolution of ~500 m. Satellite sensors such as  

these  will  be  discussed  in the following management sectors  for  which they are  most  applicable.  

Table 1 summarizes the sensors mentioned here  by resolutions, years of available data, relevant  

management uses, and locations from which data  may be downloaded or requested.  

 

Table 1. Satellite sensors discussed in this review  and their specifications. Some data 

sources require user registration or additional criteria.  

 

 

 

2.0 Management Sectors  

2.1 Coral reefs  

Shallow-water  tropical coral reefs are  some of the most  diverse  and  productive ecosystems  

in the ocean (Bellwood and Hughes  2001; Small et al.  1998).  Globally, the  economic  value  of reefs  

is ~US  $30 billion annually (Chen et al.  2015).  They are critical for the social and economic well-

being of people living in coastal regions  as  they provide seafood,  pharmaceuticals, recreation, and  

coastal protection (Burke  et al.  2011).   Despite  these  ecological and social benefits, coral reefs are  

undergoing major habitat loss (Baker et al.  2008; Gardner et al.  2003).  

The  progressive  warming of  global sea  surface  temperature  (SST)  is one  of the  most  

important environmental stressors responsible for  decline  in coral cover (Chollett  et al.  2012;  

Eakin et al. 2010; Hoegh-Guldberg &  Bruno 2010; Kleypas et al.  1999; Soto Ramos et al.  2011).  

Widespread coral bleaching and mortality are  linked to anomalously warm water  driven by El  

Niño Southern Oscillation (ENSO)  events (Baker  et al.  2008; Goreau  et al.  2000; Goreau  & Hayes  

1994). Reductions in coral cover of key reef-building species is changing the  biodiversity in these  
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133 ecosystems, and  reducing  critical habitat for many  marine species including reef  fishes  (Goreau  et 

al.  2000; Somerfield et al.  2008; Soto Ramos et al.  2011; Vega-Rodriguez et al.  2015).  Thus, loss  

of reef services (e.g. tourism and recreational activities)  due  to decreased coral cover and  

biodiversity has been estimated to be  approximately US $4-$24 billion annually (Chen et al.  2015).  

Building stronger coral  reef management strategies requires identifying regional stressors 

(e.g. SST, decreased water quality due  to coastal  erosion or runoff)  and evaluating them in the  

context of species-specific responses and reef connectivity (Aswani et al.  2015).  Satellite-based  

observations have  successfully provided  inexpensive real-time data used to enhance  our  

understanding of  coral reef dynamics. Extensive  reviews  cover remote  sensing  methods and  

applications for  coral reef observations and monitoring (Eakin et al.  2010; Goodman et al.  2013; 

Hedley et al.  2016; Hochberg  2011).  Specifically, satellite-derived products have  been used to  

monitor and forecast global coral bleaching and mortality, map global distributions of coral reef  

habitats, provide  synoptic  views  of large-scale  oceanographic  processes,  and evaluate  changes in  

water quality.  

  

2.1.1  Management Applications  

Satellite observations, combined with local in  situ  time series of bio-geochemical  

observations and forecasting models, are required for better support of Ecosystem-Based  

Management (EBM) initiatives (IOCCG  2009; Lorenzoni & Benway 2013; Sherman et al.  

2011; Stuart et al.  2011). For example,  newly  derived  thermal stress  products (e.g.  bleaching  alert  

areas; Figure  2) were  developed by the NOAA  Coral Reef Watch Program (Liu et al.  2014) in  

response to coastal and reef manager needs. NOAA’s next-generation of daily global geostationary 

and polar-orbiting SST  images reliably monitor thermal-stress conditions on 95%  of reefs  
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156 worldwide (Liu et al.  2014).  These  operational and freely accessible  products have  been 

incorporated  into the  monitoring and management efforts of  the NOAA  Coral Reef Conservation  

Program, the  states of  Florida  and  Hawaii, The  Nature  Conservancy, Guam,  and  the  

Commonwealth of the Northern Mariana  Islands,  among others (Liu et al.  2014). In the Florida  

Keys, these  products are  frequently used as part of the Coral Bleaching Early Warning Network  

conditions reports (Walter  2015). Based on satellite SST products, prediction-based models have  

been integrated within early warning systems in Australia  and are  used to  understand and target 

increased incidence  of coral disease  outbreaks  (Maynard et al.  2011).  These  models, combined  

with volunteer-based ground-truth monitoring networks, help management responses to succeed. 

Additionally, acute changes in the coastal water  quality that surrounds coral reefs could potentially 

alter reef health.  The  impact of sediment plumes, another  concern for  reef managers, has been  

associated with increased  incidence  of coral disease  (Pollock et al.  2014).  The  extent of sediment 

plumes, caused  by dredging activities or river discharge,  has been estimated along coastal areas 

and nearby reefs using  freely accessible high spatial- and temporal-resolution remote  sensing  data 

from sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat 

(Barnes et al.  2015; Evans et al.  2012).  
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172 

173 Figure 2. NOAA Coral Reef Watch 5-km spatial-resolution thermal-stress products for August 

22, 2016:  A) Sea Surface Temperature (SST), B) SST anomaly, and C) Coral Bleaching Hot  

Spots  (https://coralreefwatch.noaa.gov/satellite/index.php).  
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176 The  combination of high spatial-resolution satellite imagery (e.g. IKONOS) with aerial 

photography and Light  Detection And Ranging (LiDAR) data, which uses  multiple returns of laser  

surveying to build digital elevation models,  has led to the creation of accurate  benthic  habitat maps  

for  Caribbean reefs, including some endangered stony coral species (e.g. Acropora  spp.) (Wirt et 

al.  2015).  Researchers at the Florida  Fish and Wildlife  Commission successfully used  these  habitat 

maps to identify the distribution of  Acropora palmata  and  A. cervicornis  in the Florida  and  

Caribbean regions  and  to identify areas of  suitable substrate  for  Acropora  spp. coral larvae  

settlement.  These habitat maps that have been used to identify areas of suitable substrate for coral 

larvae  settlement (Wirt et al.  2015).  Satellite-derived data have  also been used to identify and 

manage  marine  protected  areas,  which include important reefs. For example, in Brazil, proxies for  

habitat quality derived from satellite observations (e.g. thermal stress, sedimentation) combined 

with high-resolution coral-reef habitat maps derived from Landsat images were  used to select 

priority reef-conservation areas (Magris et al.  2015).  

 

2.2 Wetlands  

Global wetlands are  estimated to be  worth billions of dollars for  their  ecosystem services  

(i.e. the  direct  and  indirect contributions of ecosystems to human well-being). These  include  

commercial- and recreational-fish habitat and nurseries, nutrient and suspended-solid filtration and 

removal, flood protection, erosion control, recreation, aesthetics and other  cultural values (Dahl 

and Stedman  2013; Ozesmi and Bauer  2002; Turner and Gannon  2014). Wetlands are, in fact, the  

only ecosystem covered by a  global treaty –  the Ramsar  Convention on Wetlands, signed in 1971.  

Despite  their  significance, the areal extent of wetlands declined substantially in the 20th  century as 
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198 a  result  of development, pollution, and sea-level rise, among other  contributors (Dahl and Stedman  

2013; Raabe et al.  2012).  

In response, management agencies around  the world have  identified wetland restoration 

and conservation as  priority goals, and many  have  employed remote  sensing technologies to help  

achieve those goals. In fact, the use of aerial-based imagery for wetland management  is relatively  

well-established (see  Green et al.  1996 for  a  review  of aerial and early satellite sensor applications). 

Recent advances, however, in the spatial, spectral, and temporal resolutions of satellite-based  

sensors, as well  as declining costs  associated with data  acquisition and processing, have  increased 

the viability of satellite  sensors as wetland-management tools  (see  Heumann  2011, for  a  

comprehensive summary  of satellite sensors available  through 2010 and their  applicability for  

mapping mangroves).  

 

2.2.1 Management Applications  

The  following management needs have  been  served through remotely sensed data: 

mapping at site, basin, and global levels;  inventory and baseline  assessment;  status and trends 

assessment; monitoring and reporting;  and management planning and implementation (MacKay et  

al.  2009).  Mapping  wetlands is considered  “critical  for  practical management and decision-making 

purposes”  (MacKay et  al.  2009),  and many  studies have  employed satellite  data for  mapping  

purposes (Giri et al.  2011; Jia et al.  2014; MacAlister  and Mahaxay  2009;  McCarthy et al.  2015).  

Using Landsat imagery, MacAlister and Mahaxay (2009) successfully mapped wetlands of the  

Lower Mekong  Basin in Southeast Asia. They identified 31 wetland and 23  non-wetland categories  

in five  pilot study  areas.  Images were  classified  using  the common Maximum Likelihood approach  

to a  minimum mapping  unit  of 60 m. Field surveys were  used to assess their  classification  
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221 accuracy, which ranged from 77.2-93.8%  across  the five  sites. The  maps are  now in use  for  

resource  and conservation planning at provincial  and national levels in the countries of Laos,  

Cambodia  and Vietnam.  They have  also been used  for  Ramsar  site  delineation, water-use  planning,  

fire  and water strategies,  and site  conservation management plan development (MacAlister and  

Mahaxay  2009).  

Herrero and Castañeda  (2009) used Landsat imagery to map, delineate, and monitor 

wetlands. They evaluated  small (<2 ha  to >200 ha) saline  wetlands in northeastern Spain with  52 

Landsat images from 1984-2004. Unsupervised  classification methods were  combined with field 

observations to identify five soil  surface  covers  in each  image. These  were  used to determine  the  

conservation status, limits and functions of 53 wetlands. They  found  that 60%  of the habitats were  

highly vulnerable to a  variety of environmental and anthropogenic stressors, including agricultural 

intensification, waste dumping, and loss  of native  vegetation. Landsat imagery proved useful not 

only for  the consistent and comprehensive assessment of wetland conditions, but also for  its ability  

to fill historical gaps of scarce field records (Herrero and Casteñeda  2009).  

Dabrowska-Zielinska  et  al. (2009) demonstrated the use  of both visible-light and 

microwave  remote  sensing  data to monitor wetlands. They studied the Biebrza  Wetlands in  

northeastern  Poland –  a  Ramsar  test site, and one  of  the largest wetland ecosystems in Europe.  

This fragile  ecosystem has been  intensively drained by development ventures in recent years, but  

is a  target area  for  restoration and conservation. In order to develop a  management strategy,  

managers  needed the remaining wetlands to be  mapped, and the marshland habitats characterized. 

Due  to the  size,  isolation, and challenging terrain, traditional field survey methods were  not  

feasible. The  circumstances provided an opportunity for  researchers to explore  new ways to map  

wetlands while  fulfilling a  fundamental  wetland-management requirement. Data  from multiple 
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244 microwave- and visible-range  satellite  sensors were  compared to determine  the best vegetation  

indices for  distinguishing  marshland vegetation classes  remotely. The  authors concluded that the 

Enhanced  Vegetation Index (EVI)  and Global Environmental Monitoring Index from SPOT  

VEGETATION, and the  EVI from  ENVISAT  MERIS  were  most  effective  in  identifying 

marshland habitat classes. The  Leaf Area  Index (LAI)  derived from  microwave  Advanced 

Synthetic Aperture  Radar (ASAR)  data was also used for  soil  moisture  estimation, and  proved  

effective even under cloudy conditions when optical data was not useful.  The results of this study  

showed that relatively coarse  resolution imagery  could be  successfully used for  identifying and  

characterizing sufficiently large  wetland habitats  to be  managed, and  for  monitoring changes in 

wetland vegetation caused by soil  moisture  and humidity changes  that result  from anthropogenic  

wetland drainage.  

  

2.3 Water Quality  

Routine  coastal water-quality monitoring is carried out in the field by  management  

agencies but is often costly and labor  intensive (Bierman et al.  2011).  Due  to cost constraints, 

sampling stations  may only represent a  small portion of the water  body and can only provide  a  

snapshot  of water  quality conditions in  one  location at one  point in time. Herein, remotely sensed  

water  quality is defined as the simultaneous measurement of three  color-producing agents (CPAs)  

that contribute to the overall  “color”  of a  water  body: chlorophyll-a  (Chla), suspended minerals, 

and colored dissolved organic matter  (CDOM). These  parameters absorb and scatter light in the  

water  column to a  degree  that can be  measured from space  (Bukata  2005). They  have  unique  

optical signatures in terms of scattering and absorption, which allows for  their  relative  

contributions to the overall  color of the  water to be  differentiated. Chlorophyll-a, a  proxy  for  the  
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267 biomass of algal particles (phytoplankton), is a  fundamental parameter  in the study  of coastal water  

quality and can indicate increased nutrients in a  water  body (Bukata  2005; Devlin et al.  2011;  

Schaeffer et al.  2012).  Colored dissolved organic  matter  is defined as the  colored portion of  the 

pool of dissolved organic carbon (Blough and Del Vecchio  2002).  

Water  clarity is another  parameter of interest in coastal water-quality management related  

to light absorption and scattering by mineral particles. Often reported as turbidity or total 

suspended sediments (TSS), water  clarity is a  measure  of reduced light penetration within the water  

column, which may lead to degraded water  quality that can impact the productivity and health of 

coastal ecosystems (Cloern et al.  2013; May et al.  2003; Wofsy  1983).  As an example  for  Tampa  

Bay, FL, three  constituents (CDOM, turbidity, and chlorophyll-a) can be simultaneously assessed  

with the MODIS  sensor  using  the methods of  Chen et al., (2007a), Chen et al., (2007b)  and  Le  et 

al., (2012), respectively. It is important to note that these  approaches, particularly for  chlorophyll-

a, are quite localized and cannot be broadly applied to a variety of environments.  

 

2.3.1 Management Applications  

Satellite observations have  been used to assess and monitor coastal water-quality in 

numerous studies. “Black water”  events in southwest Florida  were  observed using  MODIS  and  

Sea-viewing Wide  Field-of-View Sensor (SeaWiFS) data by Zhao et al. (2013). A study  by  

Thompson et al. (2014) discovered marked seasonal variability in water  quality on the Great  

Barrier  Reef in Australia  using  data from the MODIS  sensor. Barnes et al. (2013a) used data from 

the Landsat and MODIS  sensors to  investigate historical changes in water  quality in  the Florida  

Keys from the 1980’s until present. Using the  recently launched Geostationary Ocean Color  

Imager  (GOCI), Jang  et al. (2016) developed water quality indices for coastal areas in Korea. The  
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290 technology exists for  the remote  sensing  community to provide  useful, synoptic  measurements of  

relevant water quality indicators to managers (Bukata  2005),  but these  products are  currently 

underutilized in an operational manner (Schaeffer et al.  2013).  

To assist managers in assessing water  quality conditions, a  decision-support tool  for  Tampa  

Bay, Florida  was developed by Le  et al. (2013) using  a  satellite-based Water  Quality Decision 

Matrix (WQDM). Based  upon previously established targets and thresholds of water  clarity and 

chlorophyll-a concentration (Janicki et al.  2000), satellite-derived  indices of  these  two  parameters  

were  used to create the WQDM, which tracks annual mean water-quality conditions to help inform  

managers when making decisions. A “green”  color in the WQDM indicates “good”  conditions 

requiring no direct action by managers. A “yellow”  color indicates  that one  of  the two water  quality 

indices has exceeded its threshold by more  than one  standard deviation. Yellow conditions indicate 

that managers should be  alert to changing conditions. A “red”  condition exists if both water  quality  

indices exceed their  thresholds by over two standard deviations and indicates poor water  quality 

conditions. If “red”  conditions persist  for  two  consecutive  years, management action is required.  

While  these  WQDM matrices are  produced on an annual basis  in Tampa  Bay Estuary Program  

reports  largely based on in-situ data, satellite-based water  quality data that may be  used to derive  

them can  be  found  at the University of South  Florida  Optical Oceanography Laboratory website  

(http://optics.marine.usf.edu/projects/vbs.html).  
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308 

309 Figure 3. Table 4 from Le et al. (2013)  comparing annual mean water-quality conditions 

in four sections of Tampa Bay, Florida based on indices  derived from (A) historical field data, 

and (B) satellite data. OTB = Old Tampa Bay; HB = Hillsborough Bay; MTB = Middle Tampa 

Bay; LTB = Lower Tampa Bay.  

 

2.4 Public Health  

Remote  sensing  techniques have  been widely  applied in coastal  areas to assess public  

health concerns (Glasgow et al.  2004; Hay  2011). Global air pollution is one  of the most  critical 

environmental health risks, estimated to cost 2 million premature  deaths, and it  is largely due  to  

enhanced anthropogenic  activities such as burning fossil fuels (Wigbels  2011).  Global 

observations of air pollutants such as aerosols, tropospheric ozone, tropospheric nitrogen dioxide, 

carbon monoxide,  formaldehyde, and  sulfur  dioxide  are  now  widely available (Paciorek and  Liu  

2009; Wang et al.  2015).  Among air pollution variants, airborne  dust  carrying heavy metals and  

particulate  matter (PM) is  considered  one  of  the most harmful (Yan et al.  2015). Urban  air pollution 

is one  of the top 15 causes of death and disease  globally, and it  is always ranked in the top 10 for  
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324 high-income  countries (Bechle et al.  2013).   Reliable predictions of public  health risks such as heat

waves, extreme and prolonged heat episodes, atmospheric  ozone, dust  and other  aerosols that

trigger asthmatic responses are vital to improving public health (Shamir and Georgakakos  2014).  

  Additionally, vector-borne  diseases (VBD)  such as those  carried by mosquitoes, ticks, and

flies are  currently responsible  for  more  deaths in humans than all  other  causes combined (Kalluri

et al.  2007).  Improved methods  are  required for  forecasting, early warning systems, prevention,

and control of vector-borne  diseases due  to the increasing trend of large-scale epidemics such as

malaria, dengue and chikungunya (Chuang et al.  2012).  

  

2.4.1 Management Applications: Air Pollution  

Remotely sensed estimations of aerosols could lead to better assessments of air quality, 

particularly in suburban and rural areas that are often far from in-situ  sensors (Basly and Wald  

2010; Bechle et al.  2013; Malakar et al. 2014). For example, satellite-based observations of 

nitrogen dioxide from the Ozone Monitoring Instrument (OMI) provide reliable measurements of

ground-level nitrogen-dioxide exposure within a large area (Bechle et al.  2013). Additionally, 

researchers at the Hong Kong Polytechnic University used remote sensing and in-situ  data to 

assess dustfall distribution in urban areas (Yan et al.  2015). Yan et al. (2015) showed that 

construction sites and low-rise buildings with inappropriate land-use were  two main sources of 

dust pollution. This technique offered a low-cost and effective method for monitoring and 

managing dustfall in an urban environments.   

In Spain, the Ministry of  Agriculture and Fisheries, Food, and Environment, and the 

National Weather Agency have adopted the forecasts of dust surface concentration and dust  

optical depth released by the Barcelona Dust Forecast Center (BDFC). The  BDFC is the first 
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347 Regional Specialized Meteorological Centre specializing in atmospheric sand and dust  

forecasting, as designated by the World Meteorological Organization. It produces dust forecasts  

for Northern Africa, the Middle East and Europe  (http://dust.aemet.es/news/dust-forecasts-

available-on-the-wmo-website).  Additionally, the  Government of the Hong Kong Special 

Administrative Region, China Meteorological Authority,  and Japan Meteorological Authority 

have  adopted maps of dust pollution for monitoring and management,  including the development 

of several tools  based on satellite imagery  for monitoring sand and dust weather (Sand and Dust 

Storm Warning Advisory and Assessment System (SDS-WAS)).  

Previous  studies suggest that oceanic harmful algal bloom  (HAB) toxins can either be  

released into the  air  or  accumulate in shellfish, leading to public  health concerns such as asthma,  

ciguatera  and  paralytic, neurotoxic, amnesic and  diarrhetic  shellfish poisoning (Backer  2002  2003  

2005; Fleming et al.  2007; Pitois et al.  2000; Randolph et al.  2008; Van Dolah  2000).   Along the  

West Florida  Shelf (WFS), blooms of Karenia  brevis  have  been studied using  chlorophyll-a  and 

fluorescence  line  height  (FLH) remote  sensing  products derived from SeaWIFS  and MODIS  

satellites (Hu et al.  2007; Soto Ramos et al., in press;  Stumpf et al.  2003).  Satellite-derived SST, 

FLH, and chlorophyll-a  provide the tools for  large-scale, early warning identification and 

mitigation techniques to reduce  risks due to these  blooms.  

  

2.4.2 Management Applications: Heat Vulnerability  

To better manage  heat-related health risks, information is required on the intra-urban  

variability of vulnerability to heat wave  events (Wolf and McGregor  2013).  In Brisbane, Australia, 

MODIS  Land Surface  Temperature  data were  used to examine  the impact of temperature  on 

childhood pneumonia  (Xu et al.  2014).  Mohan  and Kandya  (2015)  investigated the effect of  
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370 urbanization on the land surface  temperature  in India by using  Terra  and Aqua  MODIS  land  

surface  data obtained from the Monsoon Asia  Integrated Regional Study program. They called for  

strong and urgent heat-island mitigation measures  after  finding that the  level of human  mortality 

risk remained high during a  prolonged extreme heat episode. This type of information has been 

widely used to determine  heat vulnerability in different cities around  the world, primarily in  

continental areas  and mid-latitudes such as London, Toronto, Rome, Florence,  Philadelphia  and  

Chicago (Bao et al.  2015; Morabito et al.  2015; Rinner  and Hussain  2011; Wolf and McGregor  

2013) .  

  

2.4.3 Management Applications: Vector-Borne Diseases  

The  use  of satellite data for  epidemiological purposes, including characterizing  the  

environments in which vectors thrive, has improved our ability to determine  disease  distributions, 

their  impacts on populations, and their  changes through time (Buczac  et al.  2012; Garni et al.  2014;  

White-Newsome  et al.  2013; Young et al.  2013).  Variability in environmental components, such 

as temperature  and precipitation, has important influences on mosquito life  cycles. Understanding 

the spatial and temporal patterns of mosquito populations is critical for  control and prevention of  

vector-borne  diseases (Chuang et al.  2012).  Research conducted by  South Dakota State  University  

from 2005 to 2010, used NASA’s Advanced Microwave  Scanning Radiometer  (AMSR-E)  and in-

situ  weather station data to successfully identify environmental metrics (e.g. air and sea  surface  

temperature, humidity, and rainfall) and better predict population dynamics of mosquitoes Aedes 

vexans  and  Culex  tarsalis  while improving the effectiveness of mosquito-borne  disease  early 

warning systems (Chuang et al.  2012; Méndez-Lázaro et al.  2014).  
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         Satellite sensors provide  information about a  wide  variety of water  parameters (e.g. SST, 

water  clarity, chlorophyll-a  estimates, and FLH) that can be  used to understand spatiotemporal 

variations of vector- and  water-borne  diseases (Colwell  1996; Ritchie et al.  2003; Rodó et al.  

2013).  Cholera  thrives in warmer waters  (Colwell  2004; Epstein et al.  1993; Huq et al.  1984);  

therefore  a  combination of  remote-sensing  techniques and historical cholera-case  data,  can  enable  

researchers to understand  patterns in Cholera  outbreaks. Lobitz  et al. (2000) used satellite-derived  

SST to assess how increased water temperatures were  related with increased numbers of cholera  

cases in coastal areas (Pascual et al.  2000; Speelman et al.  2000).   

         These activities have  led to improvements  in health  management within coastal areas, 

especially by creating early warning systems to decrease outbreaks on coastal communities (Ho 

Ahn et  al.  2005; Rose et al.  2001).  For example, Anyamba et al. (2008) were able to produce  

risk-mapping models using satellite-derived SST, rainfall, and a vegetation index to accurately 

predict the location and timing of  Rift Valley Fever (RVF) activity with  a 2 to 6 week period of 

warning for the Horn of Africa that facilitated disease-outbreak response and mitigation 

activities.  Further, Malaria Early Warning Systems (MEWS) use  transmission risk indicators, 

such as unusually elevated rainfall,  to predict the timing and severity of a malaria epidemic  2 to 4 

months in advance (Thomson et al. 2005; World Health Organization, 2001).  Early detection of  

the outbreaks has allowed early activation of vector control and the implementation of other  

effective control measures (Kiang, 2009; Lee  et al. 2010; Lowe et al. 2011; World Health 

Organization, 2001).  

 

2.5 Fisheries and Aquaculture  
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414 There  is currently a  global food shortage,  and  therefore  a  need  for enhanced  food  

production (FAO  2015). A potential solution to this problem involves improving fisheries 

management, and the expansion  of sustainable  aquaculture  from small-scale family practice  to a  

highly commercial industry. To expand this renewable, rapid-growth resource, the industry needs  

to overcome substantial bio-physical, socio-economical, and spatiotemporal constraints (Forget et 

al.  2009; Nath et al.  2000).  The  application of  remote  sensing  and geographical information 

systems (GIS), in addition to traditional data and methods, may substantially improve  the ability  

of managers to address these  constraints  (Meaden  and Aguilar-Manjarrez  2013).  Remote  sensing  

offers a  useful suite  of tools that can rapidly monitor aquatic  environments in terms of physical  

water-quality parameters (e.g. sea-surface  temperature, sea-surface  salinity, sea-level rise, 

turbidity, currents, colored dissolved organic  matter, ice  coverage,  bathymetry, red  tides, and  oil  

spills), and biological processes (e.g.  chlorophyll-a  and net  primary  productivity), and support 

facilities that influence  fisheries and aquaculture planning.  

  

2.5.1 Management Applications: Fisheries  

Sea  surface  temperature  (SST)  observations are  used to identify areas  of upwelling 

(nutrient-rich deeper waters brought to the surface), which drive  primary production and support  

productive  fisheries (Muller-Karger  et al.  2001; Rueda-Roa  2012). Fisheries managers  rely  on 

these  remote-sensing  products to predict fish aggregations in space  and time,  and to manage  marine  

fishery resources (Santos  2000; Lindo-Atichati  et al.  2012; Habtes  2014).  The  search time of some  

U.S. commercial fisheries is reduced by 25–50%  due  to the use  of satellite-derived fishery aid  

charts (Santos  2000).  Several early studies of fisheries used the Advanced Very High Resolution 

Radiometer  (AVHRR) and Coastal Zone  Color Scanner (CZCS) satellite sensors to aid in 
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437 monitoring tuna off  of the  California coast (Bakun  2006; Fiedler  1983; Laurs et al.  1984).  The  

migration, distribution, availability, and catchability of tuna are  influenced by oceanographic  

conditions (Laurs et al.  1984; Lindo-Atichati  et al  2012).  Tuna  tend to aggregate along the coast  

near surface  frontal boundaries that are  associated with coastal upwelling along the central  

California coast. Upwelling intensity  was identified via SST images from AVHRR. Fiedler (1983)  

studied tuna that were  caught when upwelling was not constant.  He  found  that tuna was grouped 

based on distance  to the upwelling filaments, and the mean length and stomach volume  increased 

with distance  away from  the upwelling filament. The  diet of the tuna that were  caught closest to 

the upwelling filament indicated that juvenile anchovies were  in high abundance  in this area  as  

well, which helped define  the limits of the spawning activity of the anchovy. Managers may use  

remotely sensed upwelling observations to predict the prevalence  and catchability of tuna and  

anchovy populations in coastal regions.  

     The  recruitment of  octopi is also influenced by  environmental indices such as coastal 

upwelling (Faure  et al.  2000).  Faure  et al. (2000) studied the relationship between octopus  

recruitment and  environmental indices, both of which fluctuate  annually  and seasonally off  the  

Mauritanian coast. This study  utilized the Meteosat sensor for  SST data, and  obtained wind 

turbulence  data from the Comprehensive Ocean Atmosphere  Data  Set (CODAS). The  Mauritanian  

coast experiences trade  winds that generate  seasonal upwelling from October  to June, with  

maximum  upwelling from January to May (Faure  et al.  2000).  Faure  et  al. (2000) found  that  

spawning takes place  in and out of upwelling seasons. It was discovered that upwelling and wind-

induced turbulence  were  linear and positive  with  summer recruitments, confirming that coastal 

upwelling primarily contributes to the  summer  recruitment variability of  octopi. High-intensity 

upwelling events combined with wind turbulence  create  a  high encounter  rate between food and 
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460 larvae, which favors larvae  survival. Fisheries managers may use  this information to identify  

favorable  conditions for reproduction in  similar fashion  to commercial operations like  Roffer’s  

Ocean  Fishing Forecast Service, Inc.  (https://www.roffs.com/),  which processes SST and  other  

satellite-derived data to produce maps guiding fishermen to productive grounds.  

  

2.5.2 Management Applications: Aquaculture  

The top priority for sustainable aquaculture development is appropriate site selection. The  

process of selecting sites where  natural conditions suit the cultured fish species and the impact on 

the surrounding  environment is minimized may be  substantially improved with the use  of remote  

sensing  tools and techniques (Alexandridis et al.  2008; Boyd  and Schmittou  1999; Forget et al.  

2009; Radiarta and  Saitoh  2008).  Mustapha  and Saitoh  (2008) demonstrated the utility of remote  

sensing  data for  scallop aquaculture  site  selection  in Japan  along Funka  Bay, Hokkaido  by  using  

Special Sensor Microwave  Imager  (SSMI)  microwave  and SeaWiFS  data  of ice  cover and wind  

stress that affect the spring  bloom. Others have  used MODIS, SeaWiFS,  and Advanced Land 

Observing Satellite (ALOS) data  sets of  SST, chlorophyll-a, turbidity, suspended solids, and  

bathymetry for  site  selection mapping (Radiarta and Saitoh  2008;  Radiarta  and Saitoh  2009).  

Suitability modeling of the data  revealed that  about 83%  of  the bay area  has optimum  conditions 

for scallop culture (Radiarta and Saitoh  2009).  

Bivalve  aquaculture  tended to be  practiced  close  to the coastline where  suspended  

particulate  matter supports phytoplankton (Dowd  2005; Noren et al.  1999).   Thomas et al. (2006)  

evaluated the carrying capacity of the mussel-cultured areas in the Mont  St. Michel Bay, France, 

as well  as discovering  new, potential sites using daily SeaWiFS  imagery. Modeling the 

chlorophyll-a  and  SST data derived from the sensor and verified  on the ground resulted in maps 
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483 of prediction scenarios for mussel production. In  New Zealand, the aquaculture  of suspended  

mussels was practiced in the Bay of Plenty. A  series of studies using  AVHRR  images, and  

SeaWiFS  images for  SST and Chl-a, respectively, identified the most  productive  regions  based  on  

bathymetry, currents, and upwelling conditions (Longdill et al.  2007; Longdill et al.  2008a;  

Longdill et al.  2008b; Longdill et al.  2008c). After  multiplying the  normalized monthly 

climatological anomalies  of SST and chlorophyll-a  together, all  layers were  converted to 200 m 2 

spatial resolution excluding the locations more  than 30 km from the coast or deeper than 100 m. 

The  output  models were  subjected to multi-criteria  evaluation techniques to achieve  the best 

sustainable  management plan for  the mussel culture  (Aguilar-Manjarrez  1996; Arnold et al.  2000; 

Carrick et al.  2007; Vincenzi et al.  2006; Zeng  et al.  2003).  The  results  of Longdill  et al. (2008c) 

showed that only 18%  of  the bay area  was classified as most  suitable for  mussel aquaculture, and 

46% was classified as unsuitable  (Figure 4).  

484 

485 

486 

487 

488 

489 

490 

491 

492 

493 

494 

495 

496 Figure 4. Suitability map for offshore bivalve  aquaculture in the Bay of Plenty, New 

Zealand  (Longdill et al., 2008c). Suitability determination incorporated SST and chl-a  estimates 

from AVHRR and SeaWIFS sensors.  
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499 Coastal aquaculture  has increased rapidly in recent years all  over the world, as has interest 

in monitoring such practices. In  2007, South  Africa  launched a  satellite designed to track  

aquaculture  production and to predict fish yield. The  15 m spatial resolution, hyperspectral satellite 

named Multi-sensor  Microsatellite Imager (MSMI)  has  200 spectral  channels, and a  revisit time 

of 10 days (Steyn  2010;  Quansah et al.  2007).  Delineating aquaculture  coasts  is difficult when  

using  traditional automated mapping methods due  to the spectral similarities between  aquaculture  

regions  and ocean. However, a  process called object-based region growing integrated with edge  

detection (OBRGIE) was a chieved to delineate aquaculture  coastlines by Zhang et al. (2013). The  

OBRGIE method was found to be  much more  effective  than the spectral attribute  in separating  

land and sea  in aquaculture  coasts  of the  Bohai Sea  in Northern  China and Zhujiangkou Estuary  

in Southern China using Landsat and SPOT-5 multispectral images, respectively.  

  

2.6 Challenges  

Many challenges in the interpretation of satellite data for coastal-management 

applications remain. For example, cloud cover interferes with visible light, and therefore  

hampers the use of imagery collected in the visible and infrared range of the electromagnetic  

spectrum. This issue may be avoided, depending on the research application, by using imagery 

collected in the microwave range of the electromagnetic spectrum because  it is not affected by 

cloud cover (Dabrowska-Zielinska et al.  2009), or by using imagery with high temporal-

resolution (i.e. frequent repeat times), which may provide more opportunities for acquiring 

cloudless imagery. Also, variability in the concentration and type of light-absorbing aerosols is 

quite high in the coastal zone, a problem that can easily confound existing approaches to 
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521 atmospheric correction. Therefore, accurate atmospheric correction is vital to the generation of  

usable remote sensing products.  

In addition to atmospheric corrections, reflectance from the seafloor in coastal shallow 

areas has to also be removed from remotely sensed data when studying properties of the water  

column itself. Algorithms designed to estimate chlorophyll-a concentration from satellite data, 

for example, rely on the  use of spectral bands in the visible portion of the spectrum where light 

readily penetrates the water and reflects off the bottom (Bukata  2005). The  removal of bottom 

contribution to satellite images, specifically for optically clear waters, continues to be a difficult 

task, although important advances have been made (Barnes et al.  2013b). One solution is to 

simply mask or eliminate areas shallower than a specific depth using bathymetry data.  

When mapping wetlands and other coastal habitats, tides and other water level variations  

must be accounted for, especially when comparing images acquired at different times of day or 

year (McCarthy and Halls  2014). Maps of submerged and intertidal vegetation may be especially 

affected by variations in water level, as well as by water column components (i.e. suspended 

sediments, phytoplankton, and dissolved organic matter). Ideally, time series images will be  

selected with acquisition times that coincide with identical water levels. Accurate water levels 

are necessary to account for these variations.  More broadly, we  recommend that accuracy 

assessments of any satellite-derived product be gathered either  ad-hoc  by data users, or  from data  

providers upon request.  

Many coastal management studies have utilized the freely available MODIS, SeaWiFS, 

AVHRR, Landsat imagery, which includes several decades of continuous data coverage, and 

offers a medium- to high-spatial resolution that affords near-global coverage of land areas every 

year. Higher spatial-resolution commercial imagery, such as that from IKONOS, QuickBird, and 
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544 WorldView-2, has been used for local/regional coastal resource case studies, but it may be  cost-

prohibitive to expand the use of such imagery to larger study areas for now (Alexandridis et al.  

2008; Belluco et al.  2006; Chust et al.  2008; Forget et al.  2009; Ghioca-Robrecht et al.  2008; 

McCarthy and Halls  2014; McCarthy et al.  2015).  Nevertheless, MacKay et al. (2009) noted that, 

for wetland mapping, high-spatial resolution imagery (i.e. 1-4 m resolution) is likely more useful 

than high-spectral and medium-spatial (i.e. 10-30 m) resolution imagery due to the small, 

heterogeneous spatial structure of wetlands worldwide.  

For many applications of remote sensing data to management goals, additional 

interdisciplinary research between coastal managers and environmental scientists is needed. 

Web-based portals are emerging as powerful platforms  for managers, scientists, and the public to 

obtain historical and near-real time satellite data. Despite discussions on shared regional 

governance of living marine resources (Chakalall et al.  2007; Fanning et al.  2009), limited 

integrated environmental data analysis and visualization tools exist for the US territories and 

international community. Local management initiatives for  the  sectors discussed here, among 

others,  could benefit from readably accessible online portals, such as NOAA’s Coral Reef Watch 

website (https://coralreefwatch.noaa.gov/satellite/index.php;  Cho  2005; Ortiz-Lozano et al.  2007).  

  

3.0 Conclusions  

     As the global population continues to rise  and  concentrate along coasts, current approaches  

to managing coastal resources  require  updating. Successful management requires local 

interventions coordinated across ecologically appropriate  spatial scales,  and is best guided by  

frequent and synoptic sampling and monitoring (Sale et al.  2014).  This work reviews recent,  

demonstrated applications of remote  sensing  technology for  management of  coral reefs, wetlands,  
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567 water  quality, fisheries  and aquaculture, and  public  health. Challenges to the  use  of remote  sensing  

data for  these  purposes have  been addressed here,  and must  be  considered  before  implementing  

these  approaches for  coastal-resource  management. Space-based remote  sensing tools enhance  the  

ability of coastal-resource  managers to keep pace  with increasing population-pressure  on coastal  

resources, and  improve  climate  change  adaptation  strategies.  We  encourage  coastal managers  to 

take  advantage  of  this technology to supplement traditional management approaches toward the  

goal of preserving both human and ecosystem health.  
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